Unwinding of a DNA Triple Helix by the Werner and Bloom Syndrome Helicases
نویسندگان
چکیده
منابع مشابه
Unwinding of a DNA triple helix by the Werner and Bloom syndrome helicases.
Bloom syndrome and Werner syndrome are genome instability disorders, which result from mutations in two different genes encoding helicases. Both enzymes are members of the RecQ family of helicases, have a 3' --> 5' polarity, and require a 3' single strand tail. In addition to their activity in unwinding duplex substrates, recent studies show that the two enzymes are able to unwind G2 and G4 tet...
متن کاملPotent inhibition of werner and bloom helicases by DNA minor groove binding drugs.
Maintenance of genomic integrity is vital to all organisms. A number of human genetic disorders, including Werner Syndrome, Bloom Syndrome and Rothmund-Thomson Syndrome, exhibit genomic instability with some phenotypic characteristics of premature aging and cancer predisposition. Presumably the aberrant cellular and clinical phenotypes in these disorders arise from defects in important DNA meta...
متن کاملAnalysis of the DNA unwinding activity of RecQ family helicases.
The RecQ family of DNA helicases is highly conserved in evolution from bacteria to mammals. There are five human RecQ family members (RECQ1, BLM, WRN, RECQ4 and RECQ5), defects, three of which give rise to inherited human disorders. Mutations of BLM have been identified in patients with Bloom's syndrome, WRN has been shown to be mutated in Werner's syndrome, while mutations of RECQ4 have been a...
متن کاملVisualizing helicases unwinding DNA at the single molecule level
DNA helicases are motor proteins that catalyze the unwinding of double-stranded DNA into single-stranded DNA using the free energy from ATP hydrolysis. Single molecule approaches enable us to address detailed mechanistic questions about how such enzymes move processively along DNA. Here, an optical method has been developed to follow the unwinding of multiple DNA molecules simultaneously in rea...
متن کاملUnwinding of double-stranded DNA helix by dehydration.
Conformation changes of the double-stranded DNA helix in response to dehydration were investigated by monitoring, by agarose gel electrophoresis, the linking number of covalently closed circular DNA generated by ligation of linear DNA in the presence of different organic solvents or different temperatures. It was found that: (i) The DNA helix unwinds upon addition of certain organic solvents or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2001
ISSN: 0021-9258
DOI: 10.1074/jbc.m006784200